Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Point cloud shape completion, which aims to reconstruct the missing regions of the incomplete point clouds with plausible shapes, is an ill-posed and challenging task that benefits many downstream 3D applications. Prior approaches achieve this goal by employing a two-stage completion framework, generating a coarse yet complete seed point cloud through an encoder-decoder network, followed by refinement and upsampling. However, the encoded features suffer from information loss of the missing portion, leading to an inability of the decoder to reconstruct seed points with detailed geometric clues. To tackle this issue, we propose a novel Orthogonal Dictionary Guided Shape Completion Network (ODGNet). The proposed ODGNet consists of a Seed Generation U-Net, which leverages multi-level feature extraction and concatenation to significantly enhance the representation capability of seed points, and Orthogonal Dictionaries that can learn shape priors from training samples and thus compensate for the information loss of the missing portions during inference. Our design is simple but to the point, extensive experiment results indicate that the proposed method can reconstruct point clouds with more details and outperform previous state-of-the-art counterparts. The implementation code is available at https://github.com/corecai163/ODGNet.more » « less
-
CRISPR-Cas systems provide versatile tools for programmable genome editing. Here, we developed a caged RNA strategy that allows Cas9 to bind DNA but not cleave until light-induced activation. This approach, referred to as very fast CRISPR (vfCRISPR), creates double-strand breaks (DSBs) at the submicrometer and second scales. Synchronized cleavage improved kinetic analysis of DNA repair, revealing that cells respond to Cas9-induced DSBs within minutes and can retain MRE11 after DNA ligation. Phosphorylation of H2AX after DNA damage propagated more than 100 kilobases per minute, reaching up to 30 megabases. Using single-cell fluorescence imaging, we characterized multiple cycles of 53BP1 repair foci formation and dissolution, with the first cycle taking longer than subsequent cycles and its duration modulated by inhibition of repair. Imaging-guided subcellular Cas9 activation further facilitated genomic manipulation with single-allele resolution. vfCRISPR enables DNA-repair studies at high resolution in space, time, and genomic coordinates.more » « less
An official website of the United States government
